Some Banach space embeddings of classical function spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings of Levy Families into Banach Spaces

We prove that if a metric probability space with a usual concentration property embeds into a Banach space X, then X has a proportional Euclidean subspace. In particular, this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings spaces with concentration properties (i.e. uniformly convex spaces) into l ∞, thus providing an ”isomorphic” extension to ...

متن کامل

Test-space characterizations of some classes of Banach spaces

Let P be a class of Banach spaces and let T = {Tα}α∈A be a set of metric spaces. We say that T is a set of test-spaces for P if the following two conditions are equivalent: (1) X / ∈ P; (2) The spaces {Tα}α∈A admit uniformly bilipschitz embeddings into X. The first part of the paper is devoted to a simplification of the proof of the following test-space characterization obtained in M. I. Ostrov...

متن کامل

Embeddings of Locally Finite Metric Spaces into Banach Spaces

We show that if X is a Banach space without cotype, then every locally finite metric space embeds metrically into X.

متن کامل

Embeddings of Proper Metric Spaces into Banach Spaces

We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...

متن کامل

Coarse Embeddings of Metric Spaces into Banach Spaces

There are several characterizations of coarse embeddability of a discrete metric space into a Hilbert space. In this note we give such characterizations for general metric spaces. By applying these results to the spaces Lp(μ), we get their coarse embeddability into a Hilbert space for 0 < p < 2. This together with a theorem by Banach and Mazur yields that coarse embeddability into l2 and into L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1991

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700028781